Erratum: Theory of magnon-driven spin Seebeck effect [Phys. Rev. B 81, 214418 (2010)]

Jiang Xiao (萧江), Gerrit E. W. Bauer, Ken-chi Uchida, Eiji Saitoh, and Sadamichi Maekawa (Received 27 August 2010; published 23 September 2010)

DOI: 10.1103/PhysRevB.82.099904 PACS number(s): 85.75.-d, 73.50.Lw, 72.25.Pn, 71.36.+c, 99.10.Cd

We erroneously neglected to derive the correlator $\langle \dot{m}^i(r',t')m^j(r,t)\rangle$. In the macrospin model

$$\langle \dot{m}^{i}(0,0)m^{j}(0,0)\rangle = \frac{\gamma k_{B}T}{M_{s}V} \begin{pmatrix} -\alpha & -1\\ 1 & -\alpha \end{pmatrix}_{ij},$$
(1)

and the thermalized magnon gas

$$\langle \dot{m}^{i}(0,0)m^{j}(0,0)\rangle = \frac{\gamma k_{B}T}{M_{s}} \left[\frac{3}{2} \zeta_{5/2} \left(\frac{k_{B}T}{4\pi D} \right)^{3/2} \right] \left(\begin{array}{cc} -\alpha & -1\\ 1 & -\alpha \end{array} \right)_{ij}.$$
 (2)

In the final result for the magnon-induced spin Hall signal Eq. (25) the volume V_a should be replaced by

$$V_a' = \frac{2}{3\zeta_{5/2}} \left(\frac{4\pi D}{k_{\rm B}T}\right)^{3/2}.$$
(3)

This mistake in combination with a reappraisal of the spin wave stiffness D of YIG (See Ref. 16 of our paper) and a spread of mixing conductances between YIG and Pt $g_r/A \simeq 10^{15 \sim 16}/m^2$ lead to the following modifications in Table I.

The numbers in the text should be changed accordingly. The disagreement between theory and experiment for ξ for Py might reflect a short circuit of the ISHE signal through the extended Py layer. This is not an issue for insulating YIG.

TABLE I. Parameters and spin Seebeck results for YIG and Py. The numbering of the references below	corresponds to our	original paper,
with the addition of Ref. 23 [K. Uchida et al., Nature Mat. (to be published)].		

	YIG	Ру	Unit
D	1.55×10^{-38a}	7.6×10^{-39d}	$J \cdot m^2$
$ au_m au_{mp}$	$10^{-15 \sim -13b}$	10^{-16e}	s^2
g_r/A	$10^{15 \sim 16c}$	10^{18f}	$1/m^2$
$V_{a}^{\prime 1/3}$	5.4	3.8	nm
η (th)	0.4–0.5	0.27	mm
λ (th)	4.7–47	0.3	mm
λ (exp)	6.7	4.0	mm
ξ (th)	0.38-3.8	1.3×10^{2}	$\mu V/K$
ξ (exp)	0.16	0.25	$\mu V/K$
^a Reference 16.		^d Reference 17.	
^b Reference 13–15.		^e Reference 15, 19.	

^cReference 16, 23.

^fReference 20.

²³K. Uchida et al., Nature Materials (to be published).